Accurate band gaps of extended systems via efficient vertex corrections in GW
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study the detailed temperature and composition dependence of the resistivity, rho(T), and thermopower, S(T), for a series of layered bismuth chalcogenides Bi2Te3-xSex, and report the stoichiometry dependence of the optical band gap. In the resistivity o ...
Calculations of formation energies and charge transition levels of defects routinely rely on density functional theory (DFT) for describing the electronic structure. Since bulk band gaps of semiconductors and insulators are not well described in semilocal ...
Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tunable band gap. However, no consistent picture of the gap's effect on the optical and transport behavior h ...
The defect levels of the nitrogen dangling bond at the Si/SiO2 interface are determined through a density-functional approach. The composition grading at the interface is modeled through crystalline and amorphous models of stoichiometric SiO2, nitrided SiO ...
Tuning of effective band gaps at insulator surfaces by adsorbed molecules is of fundamental interest but also technologically relevant for contact charging induced by adsorbed molecules like hydroxybenzoic acids. Our studies by density functional theory of ...
The adsorption of dopamine onto an anatase TiO2(101) single crystal has been studied using photoemission and NEXAFS techniques Photoemission Jesuits suggest that the dopamine molecule adsorbs on the surface in a bidentate geometry, resulting in the removal ...
We investigate the bulk band structures and the surface states of Bi2Se3 and Bi2Te3 topological insulators using first-principles many-body perturbation theory based on the GW approximation. The quasiparticle self-energy corrections introduce significant c ...
We compare band-edge levels as obtained with hybrid functionals and GW perturbation theory for a wide class of materials. For sp-bonded semiconductors, a close agreement is demonstrated. However, deviations for other materials are more significant and rang ...
It is commonly believed that organic molecules are physisorbed on the ideal nonpolar surfaces of wide band gap insulators with limited variation in the electronic properties of the adsorbate molecule. On the basis of first principles calculations within de ...
To assess the accuracy of hybrid functional and many-body GW methods, we study the band offsets for a set of lattice-matched semiconductor heterojunctions, including AlAs/GaAs(100), AlP/GaP(100), Si/GaP(110), Ge/GaAs(110), Ge/AlAs(110), Ge/ZnSe(110), and Z ...