A Petrov-Galerkin reduced basis approximation of the Stokes equation in parameterized geometries
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This work is devoted to the study of the main models which describe the motion of incompressible fluids, namely the Navier-Stokes, together with their hypodissipative version, and the Euler equations. We will mainly focus on the analysis of non-smooth weak ...
Weak solutions arise naturally in the study of the Navier-Stokes and Euler equations both from an abstract regularity/blow-up perspective and from physical theories of turbulence. This thesis studies the structure and size of singular set of such weak solu ...
The multiquery solution of parametric partial differential equations (PDEs), that is, PDEs depending on a vector of parameters, is computationally challenging and appears in several engineering contexts, such as PDE-constrained optimization, uncertainty qu ...
In this paper we propose a method for the strong imposition of random Dirichlet boundary conditions in the Dynamical Low Rank (DLR) approximation of parabolic PDEs and, in particular, incompressible Navier Stokes equations. We show that the DLR variational ...
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method (DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes ...
Motivated by the dynamics of microbubbles near catalytic surfaces in bubble-powered microrockets, we consider theoretically the growth of a free spherical bubble near a flat no-slip surface in a Stokes flow. The flow at the bubble surface is characterised ...
We consider finite element error approximations of the steady incompressible Navier-Stokes equations defined on a randomly perturbed domain, the perturbation being small. Introducing a random mapping, these equations are transformed into PDEs on a fixed re ...
In the present thesis, we delve into different extremal and algebraic problems arising from combinatorial geometry. Specifically, we consider the following problems. For any integer n≥3, we define e(n) to be the minimum positive integer such that an ...
A disk that is free to rotate about its axis and connected to a torsional spring behaves as a damped oscillator when twisted and released. The initial elastic energy is periodically turned to kinetic energy and it gets progressively dissipated by the visco ...