**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Indoor localization method and system

Abstract

An indoor localization method for estimating the location of nodes (n1, n2), at least one node (n1) being connected to at least another node (n2) by at least two different channels (ch1, ch1′), comprising the following steps: measuring a distance between the connected nodes, for each channel, building a Euclidean Distance Matrix (EDM) based on the measured distances, estimating the location of the nodes (n1, n2) based on the built Euclidean Distance Matrices.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (9)

Related publications (32)

Related concepts (16)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). Since spatial cognition is a rich source of conceptual metaphors in human thought, the term is also frequently used metaphorically to mean a measurement of the amount of difference between two similar objects (such as statistical distance between probability distributions or edit distance between strings of text) or a degree of separation (as exemplified by distance between people in a social network).

In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century.

In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is where QT is the transpose of Q and I is the identity matrix. This leads to the equivalent characterization: a matrix Q is orthogonal if its transpose is equal to its inverse: where Q−1 is the inverse of Q. An orthogonal matrix Q is necessarily invertible (with inverse Q−1 = QT), unitary (Q−1 = Q∗), where Q∗ is the Hermitian adjoint (conjugate transpose) of Q, and therefore normal (Q∗Q = QQ∗) over the real numbers.

Among our five senses, we rely mostly on audition and vision to perceive an environment. Our ears are able to detect stimuli from all directions, especially from obstructed and far-away objects. Even in smoke, harsh weather conditions, or at night â situ ...

, , ,

In many problems such as phase retrieval, molecular biology, source localization, and sensor array calibration, one can measure vector differences between pairs of points and attempt to recover the position of these points; this class of problems is called ...

, ,

We present new techniques to analyze natural local search algorithms for several variants of the max-sum diversification problem which, in its most basic form, is as follows: given an n-point set X subset of R-d and an integer k, select k points in X so th ...