Enhancing the Thermal Stability of Solution-Processed Small-Molecule Semiconductor Thin Films Using a Flexible Linker Approach
Related publications (41)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The greater crystallinity of solution-processed small-molecule organic semiconductors, compared to their polymer counterparts, renders the bulk heterojunction (BHJ) more susceptible to phase separation under thermal stress, decreasing device performance. H ...
The development of fully-conjugated semiconducting block-copolymers is an important goal for organic electronics, but to date has been almost exclusively limited to materials containing poly(3-alkylthiophenes). Here we present the prototype of a class of f ...
Conjugated polymers and small molecules are a promising class of semiconducting materials for application in macroelectronic and energy conversion devices. The development of high performance devices employing this class of semicrystalline materials ultima ...
EPFL2016
Spherical dielectric particles, nanofibers, and nanorods have been widely used as embedded scattering objects in nanostructured thin film solar cells. Here we propose micron-scale rod-like dielectric particles as a more effective alternative to the spheric ...
RSC Publishing2015
Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth ...
Amer Chemical Soc2014
, , , ,
Surface recombination represents a handicap for high-efficiency solar cells. Surface recombination represents a handicap for high-efficiency solar cells. This is especially important for nanowire array solar cells, where the surface-to-volume ratio is grea ...
Tsinghua Univ Press2016
, , , ,
Two-dimensional (2D) materials are a new type of materials under intense study because of their interesting physical properties and wide range of potential applications from nanoelectronics to sensing and photonics. Monolayers of semiconducting transition ...
Amer Chemical Soc2014
,
The optical performance of tandem a-Si:H/mu c-Si:H (micromorph) thin film solar cell was investigated experimentally and by means of rigorous 3-D optical simulation. The interplay of intermediate reflectors, with different refractive indices and thicknesse ...
Elsevier Science Bv2014
Crystalline silicon (c-Si) homojunction solar cells account for over 90% of the current photovoltaic market. However, further progress of this technology is limited by recombinative losses occurring at their metal-semiconductor contacts. The goal of this t ...
EPFL2014
,
A micro-power energy harvesting system based on core(crystalline Si)-shell(amorphous Si) nanowire solar cells together with a nanowire-modified CMOS sensing platform have been developed to be used in a dust-sized autonomous chemical sensor node. The mote ( ...