Model-structure identification is important for the optimization and design of biokinetic processes. Standard Monod and Tessier functions are often used by default to describe bacterial growth with respect to a substrate, leading to significant optimization errors in case of inappropriate representation. This paper introduces shape-constrained spline (SCS) functions, which share the qualitative behavior of a number of conventional growth-rate functions expressing substrate affinity effects. A simulated case study demonstrates the capabilities in terms of model identification of SCS functions, which offer a high parametric flexibility and could replace incomplete libraries of functions by a single biokinetic model structure. Moreover, the diagnostic ability of the spline functions is illustrated for the case of Haldane kinetics, which exhibits a distinctively different shape. The major benefit of these spline functions lies in their model discrimination capabilities by indicating in a quick and conclusive way the presence of other effects than substrate affinity.
Matthias Finger, Qian Wang, Yiming Li, Varun Sharma, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Jian Wang, João Miguel das Neves Duarte, Tagir Aushev, Matthias Wolf, Yi Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Leonardo Cristella, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Davide Di Croce, Kun Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Anna Mascellani, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Hui Wang, Seungkyu Ha, Pratyush Das, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer
Michaël Unser, Alexis Marie Frederic Goujon, Joaquim Gonçalves Garcia Barreto Campos