**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# The U (n) free rigid body: Integrability and stability analysis of the equilibria

Abstract

A natural extension of the free rigid body dynamics to the unitary group U (n) is considered. The dynamics is described by the Euler equation on the Lie algebra u(n), which has a bi-Hamiltonian structure, and it can be reduced onto the adjoint orbits, as in the case of the SO(n). The complete integrability and the stability of the isolated equilibria on the generic orbits are considered by using the method of Bolsinov and Oshemkov. In particular, it is shown that all the isolated equilibria on generic orbits are Lyapunov stable. (C) 2015 Elsevier Inc. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (28)

Related publications (35)

Related MOOCs (1)

Euler's equations (rigid body dynamics)

In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is where M is the applied torques and I is the inertia matrix. The vector is the angular acceleration. Again, note that all quantities are defined in the rotating reference frame.

Lyapunov stability

Various types of stability may be discussed for the solutions of differential equations or difference equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov. In simple terms, if the solutions that start out near an equilibrium point stay near forever, then is Lyapunov stable. More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable (see asymptotic analysis).

Projective unitary group

In mathematics, the projective unitary group PU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars. Abstractly, it is the holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space. In terms of matrices, elements of U(n) are complex n×n unitary matrices, and elements of the center are diagonal matrices equal to eiθ multiplied by the identity matrix.

This study presents a general approach to the topology design of tensegrities with rigid bodies. To the best of the authors' knowledge, all existing topology design methods of tensegrities focus on tensegrities that only consist of members carrying axial f ...

, ,

In this paper, we consider unilateral contact problem without friction between a rigid body and deformable one in the framework of isogeometric analysis. We present the theoretical analysis of the mixed problem. For the displacement, we use the pushforward ...

2019The global linear stability of a water drop on hot nonwetting surfaces is studied. The droplet is assumed to have a static shape and the surface tension gradient is neglected. First, the nonlinear steady Boussinesq equation is solved to obtain the axisymme ...