Publication

Catalytic C-C Bond Activations via Oxidative Addition to Transition Metals

Abstract

Selective cleavages of carbon-carbon bonds catalyzed by transition-metal complexes have been shown to be increasingly versatile tools for organic synthesis allowing for complementary synthetic strategies. Numerous examples of transition-metal catalyzed C-C bond activations of three- and four-membered ring systems have been reported. These strained rings have been shown to engage in a variety of new ring-opening rearrangements and cycloaddition reactions leading to valuable structures. Besides strain-driven transformations, other facilitating strategies to enforce the C-C bond activation of unstrained molecules have been developed as well. While the variety of different transformations is less abundant, they concentrate on chelation-assisted reactions using appropriate permanent or transient directing groups. In particular, the cleavage and subsequent functionalization of the C-CN bonds and decarbonylation processes operating by an excision of carbon monoxide from ketone derivatives have witnessed a large progress.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.