A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as , they represent a class of organic ligands intermediate between alkyls and carbynes . They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.
Metal carbene complexes are often classified into two types. The Fischer carbenes named after Ernst Otto Fischer feature strong π-acceptors at the metal and being electrophilic at the carbene carbon atom. Schrock carbenes, named after Richard R. Schrock, are characterized by more nucleophilic carbene carbon centers; these species typically feature higher valent metals. N-Heterocyclic carbenes (NHCs) were popularized following Arduengo's isolation of a stable free carbene in 1991. Reflecting the growth of the area, carbene complexes are now known with a broad range of different reactivities and diverse substituents. Often it is not possible to classify a carbene complex with regards to its electrophilicity or nucleophilicity.
Fischer carbene
Fischer carbenes are found with:
low oxidation state metal center
middle and late transition metals Fe(0), Mo(0), Cr(0)
π-acceptor metal ligands
π-donor substituents on the carbene atom such as alkoxy and alkylated amino groups.
The chemical bonding (Scheme 1) is based on σ-type electron donation of the filled lone pair orbital of the carbene C atom to an empty metal d-orbital, and π back bonding of a filled metal d-orbital to the empty p-orbital on the carbon atom. An example is the complex .
Fischer carbenes can be likened to ketones, with the carbene carbon atom being electrophilic, much like the carbonyl carbon atom of a ketone.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Grubbs catalysts are a series of transition metal carbene complexes used as catalysts for olefin metathesis. They are named after Robert H. Grubbs, the chemist who supervised their synthesis. Several generations of the catalyst have also been developed. Grubbs catalysts tolerate many functional groups in the alkene substrates, are air-tolerant, and are compatible with a wide range of solvents. For these reasons, Grubbs catalysts have become popular in synthetic organic chemistry. Grubbs, together with Richard R.
A persistent carbene (also known as stable carbene) is a type of carbene demonstrating particular stability. The best-known examples and by far largest subgroup are the N-heterocyclic carbenes (NHC) (sometimes called Arduengo carbenes), for example diaminocarbenes with the general formula (R2N)2C:, where the four R moieties are typically alkyl and aryl groups. The groups can be linked to give heterocyclic carbenes, such as those derived from imidazole, imidazoline, thiazole or triazole.
In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is or where the R represents substituents or hydrogen atoms. The term "carbene" may also refer to the specific compound , also called methylene, the parent hydride from which all other carbene compounds are formally derived. Carbenes are classified as either singlets or triplets, depending upon their electronic structure.
This training will empowered the student with all the tools of modern chemistry, which will be highly useful for his potential career as a process or medicinal chemist in industry.
This course on homogeneous catalysis provide a detailed understanding of how these catalysts work at a mechanistic level and give examples of catalyst design for important reactions (hydrogenation, ol
Explores the use of IR spectroscopy to analyze bonding in coordination complexes through CO stretching frequencies and metal-ligand interactions.
Explores transition metal oxides in the oxygen evolution reaction and the challenges in proving the active element, along with benchmarking electrocatalysts for oxygen evolution.
Explores the Spectrochemical Series for metals and ligands, Crystal Field Splitting, Jahn-Teller distortion, and bonding interactions in coordination compounds.
The alkyne motif is a versatile functional group often encountered in organic chemistry. It can be involved in various transformations such as the alkyne-azide cycloaddition and has found widespread application in medicinal chemistry, chemical biology and ...
We present an orbital-resolved extension of the Hubbard U correction to density-functional theory (DFT). Compared to the conventional shell-averaged approach, the prediction of energetic, electronic and structural properties is strongly improved, particula ...
The work described in this thesis focuses on two classes of luminophores: tetraarylethene-based polymers and Ir(III) complexes with orthometalated ligands. Tetraarylethene-based polymers show aggregation-induced emission (AIE) and they are of interest for ...