**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Estimates for Discrete Logarithm Computations in Finite Fields of Small Characteristic

Abstract

We give estimates for the running-time of the function field sieve (FFS) to compute discrete logarithms in $\mathbb{F}_{p^n}^{\times}$ for small $p$. Specifically, we obtain sharp probability estimates that allow us to select optimal parameters in cases of cryptographic interest, without appealing to the heuristics commonly relied upon in an asymptotic analysis. We also give evidence that for any fixed field size some may be weaker than others of a different characteristic or field representation, and compare the relative difficulty of computing discrete logarithms via the FFS in such cases.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (9)

Related concepts (32)

Related publications (47)

Ontological neighbourhood

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Discrete logarithm

In mathematics, for given real numbers a and b, the logarithm logb a is a number x such that bx = a. Analogously, in any group G, powers bk can be defined for all integers k, and the discrete logarithm logb a is an integer k such that bk = a. In number theory, the more commonly used term is index: we can write x = indr a (mod m) (read "the index of a to the base r modulo m") for rx ≡ a (mod m) if r is a primitive root of m and gcd(a,m) = 1. Discrete logarithms are quickly computable in a few special cases.

Representation theory

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).

Group representation

In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules.

This paper considers the problem of second-degree price discrimination when the type distribution is unknown or imperfectly specified by means of an ambiguity set. As robustness measure we use a performance index, equivalent to relative regret, which quant ...

2023Post-quantum cryptography is a branch of cryptography which deals with cryptographic algorithms whose hardness assumptions are not based on problems known to be solvable by a quantum computer, such as the RSA problem, factoring or discrete logarithms.This ...

We define a generalization of the Mullineux involution on multipartitions using the theory of crystals for higher-level Fock spaces. Our generalized Mullineux involution turns up in representation theory via two important derived functors on cyclotomic Che ...

2020