**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Erasure Schemes Using Generalized Polar Codes: Zero-Undetected-Error Capacity and Performance Trade-offs

Abstract

We study the performance of generalized polar (GP) codes when they are used for coding schemes involving erasure. GP codes are a family of codes which contains, among others, the standard polar codes of Arikan and Reed-Muller codes. We derive a closed formula for the zero-undetected-error capacity I_0^{GP}(W) of GP codes for a given binary memoryless symmetric (BMS) channel W under the low complexity successive cancellation decoder with erasure. We show that for every R < I_0^{GP}(W), there exists a generalized polar code of blocklength N and of rate at least R where the undetected-error probability is zero and the erasure probability is less than 2^{-N^{1/2-epsilon}}. On the other hand, for any GP code of rate I_0^{GP}(W) < R < I(W) and blocklength N, the undetected error probability cannot be made less than 2^{-N^{1/2+epsilon}} unless the erasure probability is close to 1.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (18)

Related publications (40)

Error correction code

In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.

Low-density parity-check code

In information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC code is constructed using a sparse Tanner graph (subclass of the bipartite graph). LDPC codes are , which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum (the Shannon limit) for a symmetric memoryless channel.

Erasure code

In coding theory, an erasure code is a forward error correction (FEC) code under the assumption of bit erasures (rather than bit errors), which transforms a message of k symbols into a longer message (code word) with n symbols such that the original message can be recovered from a subset of the n symbols. The fraction r = k/n is called the code rate. The fraction k’/k, where k’ denotes the number of symbols required for recovery, is called reception efficiency.

Ontological neighbourhood

We propose a new class of efficient decoding algorithms for Reed-Muller (RM) codes over binary-input memoryless channels. The algorithms are based on projecting the code on its cosets, recursively decoding the projected codes (which are lower-order RM code ...

The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...

, ,

Previous works on age of information and erasure channels have dealt with specific models and computed the average age or average peak age for certain settings. In this paper, given a source that produces a letter every T-s seconds and an erasure channel t ...