We show that cellular approximations of nilpotent Postnikov stages are always nilpotent Postnikov stages, in particular classifying spaces of nilpotent groups are turned into classifying spaces of nilpotent groups. We use a modified Bousfield-Kan homology completion tower z(k) X whose terms we prove are all X-cellular for any X. As straightforward consequences, we show that if X is K-acyclic and nilpotent for a given homology theory K, then so are all its Postnikov sections P-n X, and that any nilpotent space for which the space of pointed self-maps map(*) (X, X) is "canonically" discrete must be aspherical.