**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# The Sommerfeld half-space problem revisited: from radio frequencies and Zenneck waves to visible light and Fano modes

Abstract

The classical Sommerfeld half-space problem is revisited, with generalizations to multilayer and plasmonic media and focus on the surface field computation. A new ab initio solution is presented for an arbitrarily oriented Hertzian dipole radiating in the presence of a material half-space with arbitrary horizontal stratification. The solution method combines the vector potential approach and the spectral domain transmission line analog of the medium, which results in the most compact formulation and facilitates the inclusion of any number of layers in the analysis. Following Sommerfeld, the solution is first expressed in terms of the Fourier-Bessel transforms, also known as Sommerfeld integrals. Analytical properties of the integrands in the complex plane are then investigated, including the location of the Sommerfeld pole, which gives rise to the Zenneck wave (ZW) or surface plasmon polariton (SPP), and alternative field representations are developed by a deformation of the integration path and analytic continuation of the integrand functions, using hyperbolic and vertical branch cuts. Closed-form expressions for the asymptotic surface fields are also derived and the role of the ZW and SPP is elucidated. Numerical examples are included to illustrate the theory, from radio frequencies to visible light.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (40)

Related concepts (41)

Related MOOCs (20)

Karim Achouri, Jean-Yves Duboz

The design of wavefront-shaping devices is conventionally approached using real-frequency modeling. However, since these devices interact with light through radiative channels, they are by default non-Hermitian objects having complex eigenvalues (poles and ...

,

The use of model-based numerical simulations of wave propagation in rooms for engineering applications requires that acoustic conditions for multiple parameters are evaluated iteratively, which is computationally expensive. We present a reduced basis metho ...

Secondary electron emission is an important process that plays a significant role in several plasma-related applications. As measuring the secondary electron yield experimentally is very challenging, quantitative modelling of this process to obtain reliabl ...

Surface plasmon

Surface plasmons (SPs) are coherent delocalized electron oscillations that exist at the interface between any two materials where the real part of the dielectric function changes sign across the interface (e.g. a metal-dielectric interface, such as a metal sheet in air). SPs have lower energy than bulk (or volume) plasmons which quantise the longitudinal electron oscillations about positive ion cores within the bulk of an electron gas (or plasma). The charge motion in a surface plasmon always creates electromagnetic fields outside (as well as inside) the metal.

Surface plasmon polariton

Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible-frequency. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal ("surface plasmon") and electromagnetic waves in the air or dielectric ("polariton"). They are a type of surface wave, guided along the interface in much the same way that light can be guided by an optical fiber.

Bohr model

In atomic physics, the Bohr model or Rutherford–Bohr model of the atom, presented by Niels Bohr and Ernest Rutherford in 1913, consists of a small, dense nucleus surrounded by orbiting electrons. It is analogous to the structure of the Solar System, but with attraction provided by electrostatic force rather than gravity, and with the electron energies quantized (assuming only discrete values).

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.