Numerical methods for nanophotonics: standard problems and future challenges
Related publications (96)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A three-dimensional implementation of the finite-difference time-domain method is used to estimate the down-link outage probability of a direct-sequence code division multiple access system operating in a multi-storey office building in the presence of co- ...
Solar energy has seen tremendous advances in the past years. For thin film photovoltaics, which use less of the expensive semiconductor materials, insufficient light absorption can be a limiting factor. It is hoped that by using diffractive optics to impro ...
Photonic crystals (PhCs) are engineered nanostructures that enable an extraordinary control over the flow of light. These structures can be fabricated out of common semiconductors, are compatible with existing industrial fabrication technologies, and are e ...
The classical Sommerfeld half-space problem is revisited, with generalizations to multilayer and plasmonic media and focus on the surface field computation. A new ab initio solution is presented for an arbitrarily oriented Hertzian dipole radiating in the ...
Finite elements methods (FEMs) with numerical integration play a central role in numerical homogenization methods for partial differential equations with multiple scales, as the effective data in a homogenization problem can only be recovered from a micros ...
The development of slip lines, due to strain localization, is a common cause for failure of soil in many circumstances investigated in geotechnical engineering. Through the use of numerical methods – like finite elements – many practitioners are able to ta ...
In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constit ...
The long-range correction to the surface tension can amount to up to 55% of the calculated value of the surface tension for cutoffs in the range of 2.1-6.4 sigma. The calculation of the long-range corrections to the surface tension and to the configuration ...
In recent years, there is a considerable and growing interest in developing fast integral equation methods for solving Maxwell’s equations. Volume integral equations are a versatile technique to model inhomogeneous scattering objects. Numerical tests show ...
Compression wood conifer tracheids show different swelling and stiffness properties than those of usual normal wood, which has a practical function in the living plant: when a conifer shoot is moved from its vertical position, compression wood is formed in ...