Algebraic varietyAlgebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly.
Diophantine approximationIn number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number a/b is a "good" approximation of a real number α if the absolute value of the difference between a/b and α may not decrease if a/b is replaced by another rational number with a smaller denominator.
Simple setIn computability theory, a subset of the natural numbers is called simple if it is computably enumerable (c.e.) and co-infinite (i.e. its complement is infinite), but every infinite subset of its complement is not c.e.. Simple sets are examples of c.e. sets that are not computable. Simple sets were devised by Emil Leon Post in the search for a non-Turing-complete c.e. set. Whether such sets exist is known as Post's problem. Post had to prove two things in order to obtain his result: that the simple set A is not computable, and that the K, the halting problem, does not Turing-reduce to A.
Arithmetical hierarchyIn mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy (after mathematicians Stephen Cole Kleene and Andrzej Mostowski) classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946). The arithmetical hierarchy is important in computability theory, effective descriptive set theory, and the study of formal theories such as Peano arithmetic.
Data acquisitionData acquisition is the process of sampling signals that measure real-world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems, abbreviated by the acronyms DAS, DAQ, or DAU, typically convert analog waveforms into digital values for processing. The components of data acquisition systems include: Sensors, to convert physical parameters to electrical signals. Signal conditioning circuitry, to convert sensor signals into a form that can be converted to digital values.
Effective methodIn logic, mathematics and computer science, especially metalogic and computability theory, an effective method or effective procedure is a procedure for solving a problem by any intuitively 'effective' means from a specific class. An effective method is sometimes also called a mechanical method or procedure. The definition of an effective method involves more than the method itself. In order for a method to be called effective, it must be considered with respect to a class of problems.
Real algebraic geometryIn mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomial mappings). Semialgebraic geometry is the study of semialgebraic sets, i.e. real-number solutions to algebraic inequalities with-real number coefficients, and mappings between them. The most natural mappings between semialgebraic sets are semialgebraic mappings, i.
AcutanceIn photography, acutance describes a subjective perception of sharpness that is related to the edge contrast of an . Acutance is related to the amplitude of the derivative of brightness with respect to space. Due to the nature of the human visual system, an image with higher acutance appears sharper even though an increase in acutance does not increase real . Historically, acutance was enhanced chemically during development of a negative (high acutance developers), or by optical means in printing (unsharp masking).
Quadratic variationIn mathematics, quadratic variation is used in the analysis of stochastic processes such as Brownian motion and other martingales. Quadratic variation is just one kind of variation of a process. Suppose that is a real-valued stochastic process defined on a probability space and with time index ranging over the non-negative real numbers. Its quadratic variation is the process, written as , defined as where ranges over partitions of the interval and the norm of the partition is the mesh.
Kite (geometry)In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.