Conformal mapIn mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths. More formally, let and be open subsets of . A function is called conformal (or angle-preserving) at a point if it preserves angles between directed curves through , as well as preserving orientation. Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature. The conformal property may be described in terms of the Jacobian derivative matrix of a coordinate transformation.
Timeline of gravitational physics and relativityThe following is a timeline of gravitational physics and general relativity. 3rd century BC – Aristarchus of Samos proposes heliocentric model, measures the distance to the Moon and its size 1543 – Nicolaus Copernicus places the Sun at the gravitational center, starting a revolution in science 1583 – Galileo Galilei induces the period relationship of a pendulum from observations (according to later biographer). 1586 – Simon Stevin demonstrates that two objects of different mass accelerate at the same rate when dropped.
Coupling constantIn physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies (i.e. the electric charge for electrostatic and the mass for Newtonian gravity) divided by the distance squared, , between the bodies; thus: in for Newtonian gravity and in for electrostatic.
MassMass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent.
WaveIn physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave.
Machine epsilonMachine epsilon or machine precision is an upper bound on the relative approximation error due to rounding in floating point arithmetic. This value characterizes computer arithmetic in the field of numerical analysis, and by extension in the subject of computational science. The quantity is also called macheps and it has the symbols Greek epsilon . There are two prevailing definitions. In numerical analysis, machine epsilon is dependent on the type of rounding used and is also called unit roundoff, which has the symbol bold Roman u.
Scalar fieldIn mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number (dimensionless) or a scalar physical quantity (with units). In a physical context, scalar fields are required to be independent of the choice of reference frame. That is, any two observers using the same units will agree on the value of the scalar field at the same absolute point in space (or spacetime) regardless of their respective points of origin.
Index of wave articlesThis is a list of wave topics. 21 cm line Abbe prism Absorption spectroscopy Absorption spectrum Absorption wavemeter Acoustic wave Acoustic wave equation Acoustics Acousto-optic effect Acousto-optic modulator Acousto-optics Airy disc Airy wave theory Alfvén wave Alpha waves Amphidromic point Amplitude Amplitude modulation Animal echolocation Antarctic Circumpolar Wave Antiphase Aquamarine Power Arrayed waveguide grating Artificial wave Atmospheric diffraction Atmospheric wave Atmospheric waveguide Atom la
Black holeA black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity.
B-treeIn computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree, allowing for nodes with more than two children. Unlike other self-balancing binary search trees, the B-tree is well suited for storage systems that read and write relatively large blocks of data, such as databases and s. B-trees were invented by Rudolf Bayer and Edward M.