Poisson point processIn probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field.
Stochastic geometryIn mathematics, stochastic geometry is the study of random spatial patterns. At the heart of the subject lies the study of random point patterns. This leads to the theory of spatial point processes, hence notions of Palm conditioning, which extend to the more abstract setting of random measures. There are various models for point processes, typically based on but going beyond the classic homogeneous Poisson point process (the basic model for complete spatial randomness) to find expressive models which allow effective statistical methods.
Jackson networkIn queueing theory, a discipline within the mathematical theory of probability, a Jackson network (sometimes Jacksonian network) is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution. It was the first significant development in the theory of networks of queues, and generalising and applying the ideas of the theorem to search for similar product-form solutions in other networks has been the subject of much research, including ideas used in the development of the Internet.
Campbell's theorem (probability)In probability theory and statistics, Campbell's theorem or the Campbell–Hardy theorem is either a particular equation or set of results relating to the expectation of a function summed over a point process to an integral involving the mean measure of the point process, which allows for the calculation of expected value and variance of the random sum. One version of the theorem, also known as Campbell's formula, entails an integral equation for the aforementioned sum over a general point process, and not necessarily a Poisson point process.
G-networkIn queueing theory, a discipline within the mathematical theory of probability, a G-network (generalized queueing network, often called a Gelenbe network) is an open network of G-queues first introduced by Erol Gelenbe as a model for queueing systems with specific control functions, such as traffic re-routing or traffic destruction, as well as a model for neural networks.
Point processIn statistics and probability theory, a point process or point field is a collection of mathematical points randomly located on a mathematical space such as the real line or Euclidean space. Point processes can be used for spatial data analysis, which is of interest in such diverse disciplines as forestry, plant ecology, epidemiology, geography, seismology, materials science, astronomy, telecommunications, computational neuroscience, economics and others.
Compound Poisson processA compound Poisson process is a continuous-time stochastic process with jumps. The jumps arrive randomly according to a Poisson process and the size of the jumps is also random, with a specified probability distribution. To be precise, a compound Poisson process, parameterised by a rate and jump size distribution G, is a process given by where, is the counting variable of a Poisson process with rate , and are independent and identically distributed random variables, with distribution function G, which are also independent of When are non-negative integer-valued random variables, then this compound Poisson process is known as a stuttering Poisson process.
Point process operationIn probability and statistics, a point process operation or point process transformation is a type of mathematical operation performed on a random object known as a point process, which are often used as mathematical models of phenomena that can be represented as points randomly located in space. These operations can be purely random, deterministic or both, and are used to construct new point processes, which can be then also used as mathematical models.
Continuum percolation theoryIn mathematics and probability theory, continuum percolation theory is a branch of mathematics that extends discrete percolation theory to continuous space (often Euclidean space Rn). More specifically, the underlying points of discrete percolation form types of lattices whereas the underlying points of continuum percolation are often randomly positioned in some continuous space and form a type of point process. For each point, a random shape is frequently placed on it and the shapes overlap each with other to form clumps or components.
Cox processIn probability theory, a Cox process, also known as a doubly stochastic Poisson process is a point process which is a generalization of a Poisson process where the intensity that varies across the underlying mathematical space (often space or time) is itself a stochastic process. The process is named after the statistician David Cox, who first published the model in 1955.