Publication

DC-DC Converter based on the Asymmetric Multistage Stacked Boost Architecture with Feed-Forward Control for Photovoltaic Plants

Abstract

A new feed-forward control technique for a DC-DC step-up converter based on the asymmet-ric Multistage Stacked Boost Architecture (MSBA) is presented in this paper. The proposed closed loop control scheme can provide improved accuracy in the steady-state operation and high dynamic performance. The asymmetric MSBA converter is a single output high-voltage DC-DC step-up converter that comprises several in-series connected capacitors with active voltage balancing circuits. The converter can attain high voltage ratios and thus, it is a suita-ble solution for the high voltage transmission requirements of the large photovoltaic (PV) plants. Selective simulation and experimental results are presented in order to validate the effectiveness and the operational improvements of the proposed control system.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.