Publication

Flexible 1kV thin-film transistor driving out-of-plane dielectric elastomer actuator

Abstract

This work demonstrates dielectric elastomer actuators controlled by the world's first thin-film transistors on flexible substrate operating at 1kV, thereby enabling locally switching high-voltages on DEAs using a low control voltage. The high voltages required to drive DEAs limit their integration in complex systems, such as high resolution haptic displays and multiple-degree-of-freedom robotics. We report here a top-gate, thin-film transistor (TFT) with coplanar electrodes specifically designed to drive DEAs. The TFTs are fabricated on flexible polyimide, using solution-processed zinc-tin oxide, offset gate and thick dielectric bilayer of Alumina and Parylene. The TFT switches reliably at up to 1kV, outperforming on this metric all published high-voltage TFTs. The on-off current ratio ranges from 20 to 200, the saturation mobility is 0.1cm2/Vs, and the threshold voltage is 10V. Our DEAs are designed for maximal actuation strain at 1kV, to match the maximal voltage of the TFTs. The DEA is a diaphragm actuator: a suspended non-prestretched membrane with electrodes on both sides. The circular electrode has a 5 mm diameter and the silicone membrane is 17um thick. A backpressure of 50mbar is applied to the membrane. The TFT is wired in parallel with the DEA. A change of out-of-plane displacement of 350um is achieved with 30V applied to the gate, for a circuit bias voltage of 1.4kV. The TFT + DEA operate reliably for several weeks.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.