Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Since its introduction in the mid-nineties, photoacoustic imaging of biological tissue has been one of the fastest growing biomedical imaging modality, and its basic principles are now considered as well established. In particular, light propagation in photoacoustic imaging is generally considered from the perspective of transport theory. However, recent breakthroughs in optics have shown that coherent light propagating through optically scattering medium could be manipulated towards novel imaging approaches. In this article, we first provide an introduction to the relevant concepts in the field, and then review the recent works showing that it is possible to exploit the coherence of light in conjunction with photoacoustics. We illustrate how the photoacoustic effect can be used as a powerful feedback mechanism for optical wavefront shaping in complex media, and conversely show how the coherence of light can be exploited to enhance photoacoustic imaging, for instance in terms of spatial resolution or for designing minimally invasive endoscopic devices. Finally, we discuss the current challenges and perspectives down the road towards practical applications in the field of photoacoustic imaging. (C) 2016 The Authors. Published by Elsevier GmbH.
Edoardo Charbon, Andrei Ardelean, Ming-Lo Wu, Kazuhiro Morimoto