**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Inhomogeneous minima of mixed signature lattices

Abstract

We establish an explicit upper bound for the Euclidean minimum of a number field which depends, in a precise manner, only on its discriminant and the number of real and complex embeddings. Such bounds were shown to exist by Davenport and Swinnerton-Dyer ([9-11]). In the case of totally real fields, an optimal bound was conjectured by Minkowski and it is proved for fields of small degree. In this note we develop methods of McMullen ([20]) in the case of mixed signature in order to get explicit bounds for the Euclidean minimum. (C) 2016 Elsevier Inc. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (40)

Related publications (44)

Totally real number field

In number theory, a number field F is called totally real if for each embedding of F into the complex numbers the lies inside the real numbers. Equivalent conditions are that F is generated over Q by one root of an integer polynomial P, all of the roots of P being real; or that the tensor product algebra of F with the real field, over Q, is isomorphic to a tensor power of R. For example, quadratic fields F of degree 2 over Q are either real (and then totally real), or complex, depending on whether the square root of a positive or negative number is adjoined to Q.

Algebraic number field

In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.

Discriminant of an algebraic number field

In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified. The discriminant is one of the most basic invariants of a number field, and occurs in several important analytic formulas such as the functional equation of the Dedekind zeta function of K, and the analytic class number formula for K.

Maryna Viazovska, Nihar Prakash Gargava, Vlad Serban

We examine the moments of the number of lattice points in a fixed ball of volume $V$ for lattices in Euclidean space which are modules over the ring of integers of a number field $K$. In particular, denoting by $ω_K$ the number of roots of unity in $K$, we ...

In a number of cases the minimal polynomials of the images of unipotent elements of non-prime order in irreducible representations of the exceptional algebraic groups in good characteristics are found. It is proved that if p > 5 for a group of type E-8 and ...

2019The poset Y-k,Y-2 consists of k + 2 distinct elements x(1), x(2), ..., x(k), y(1), y(2), such that x(1)