Electronic transport in B-N substituted bilayer graphene nanojunctions
Related publications (35)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Solid-state nanopores are man-made, nano-sized openings in membranes separating two chambers containing an electrolyte solution. When applying an electric field across the membrane, the nanopore provides the only path for mobile ions to pass from one side ...
This thesis is devoted to the computational study of the electronic and transport properties of monolayer and bilayer graphene in the presence of disorder arising from both topological and point defects. Among the former, we study grain boundaries in monol ...
The growing research on two-dimensional materials reveals their exceptional physical properties and enormous potential for future applications and investigation of advanced physics phenomena. They represent the ultimate limit in terms of active channel thi ...
We present the first steps to develop radiation sensors based on the graphene field effect transistor technology. Such a sensor exploits the ambipolar behavior of graphene near its Dirac point and it is not dependent on collecting charges, but it senses io ...
We investigate the possible occurrence of field-effect induced superconductivity in the hydrogenated (111) diamond surface by first-principles calculations. By computing the band alignment between bulk diamond and the hydrogenated surface, we show that the ...
The goal of this thesis is the combination of the high spatial resolution of scanning tunneling microscopy (STM) with the high temporal resolution of optical spectroscopy, by monitoring the light emitted from the tunnel junction. Two complementary techniqu ...
We studied the nonlinear optical properties of single layer graphene using high terahertz (THz) fields. With the use of a back gate and cooling down the sample to cryogenic temperatures we are able to spectrally probe the nonlinear THz properties of intrin ...
We present a robust method to obtain the displacement field of a dislocation core, which is one of the building blocks for the development of a direct multiscale method coupling an atomistic domain to a discrete dislocation dynamics engine in 3D (e.g. CADD ...
We study a classical K-type three-level system based on three high-Q micromechanical beam resonators embedded in a gradient electric field. By modulating the strength of the field at the difference frequency between adjacent beam modes, we realize strong d ...
Graphene is not the only prominent example of two-dimensional (2D) materials. Due to their interesting combination of high mechanical strength and optical transparency, direct bandgap and atomic scale thickness transition-metal dichalcogenides (TMDCs) are ...