Photonic crystal microcavities for classical and quantum information processing
Related publications (253)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Reprogrammable integrated optics provides a natural platform for tunable quantum photonic circuits, but faces challenges when high dimensions and high connectivity are involved. Here, we implement high-dimensional linear transformations on spatial modes of ...
This work demonstrates the capabilities of an entangled photon-pair source at telecom wavelengths, based on a photonic integrated Si3N4 microresonator with monolithically integrated piezoelectric frequency tuning. Previously, frequency tuning of photon pai ...
Biphoton frequency combs (BFCs) are promising quantum sources for large-scale and high-dimensional quantum information and networking systems. In this context, the spectral purity of individual frequency bins will be critical for realizing quantum networki ...
AMER PHYSICAL SOC2023
, , , ,
A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency magnons with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially sep ...
AMER PHYSICAL SOC2023
, , , , , ,
Silicon Nitride (Si3N4) photonic integrated circuits (PICs) have emerged as core technology in a variety of applications ranging from LIDAR to quantum control and computing. However, the need for high-speed, low-voltage tuning and modulation has been a lon ...
IEEE2023
Fields of technology as diverse as microwave filter construction, characterization of material interfaces with atomic precision, and detection of gravitational waves from astronomical sources employ mechanical resonators at their core. The utility of mecha ...
EPFL2023
, , ,
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate the dynamics of many-body quantum systems classically. By systematically studying the relevant stochastic estimators, we are able to: (i) prove that the most us ...
Wien2023
With the capabilities such as single-photon detection, time stamping and high-speed acquisition, time-resolved imaging based on single-photon avalanche diode (SPAD) detectors has found significant applications across diverse domains, including but not limi ...
Nonlinear frequency conversion processes, such as second-harmonic generation (SHG) and spontaneous parametric down-conversion (SPDC), are essential in many applications, including the generation of entangled photons. It's desirable to enhance these process ...
Sensing weak magnetic fields is a topic of great importance in basic science and technology due to its wide range of applications. In this context, solid-state and nanoscale quantum sensors are poised to revolutionize the sensing platforms due to their ult ...