Multiscale diffusion method for simulations of long-time defect evolution with application to dislocation climb
Related publications (47)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nanocrystalline (NC) metals have attracted widespread interest in materials science due to their high strength compared to coarse-grained counterparts. It is well know that during uniaxial deformation, the stress-strain behaviour exhibits an extraordinary ...
Body-centered cubic metals are of high technological interest: for example tungsten as potential plasma facing component in future fusion reactors, molybdenum employed in aircraft parts, niobium as superconducting magnets, etc. The characteristics of their ...
Oxide Dispersed Strengthened (ODS) ferritic stainless steels present well-known fine grains microstructures where dislocation movement is hindered by a dense precipitation of nano-oxides particles. Previous research, on the thermomechanical behavior at hig ...
Hydrogen atoms have a wide variety of effects on the mechanical performance of metals, and the underlying mechanisms associated with effects on plastic flow and embrittlement remain to be discovered or validated. Here, the reduction in the plastic flow str ...
The interaction between domain walls and pinning centers in ferroelectrics is of great interest from both fundamental and practical points of view. In this work, we show that, counter to intuition, the apparent velocity of domain walls can increase as the ...
Recent experimental investigations show that large-area samples of graphene tend to be polycrystalline. Physical properties of such samples are strongly affected by the presence of intrinsic topological defects of polycrystalline materials-dislocations and ...
Dislocation dynamics are important to understand material plasticity in small-sized materials. In case of face-centered cubic crystalline systems, densities of initial dislocations, dislocation nucleations and starvations processes influence material stren ...
Ferritic/martensitic steels are candidate materials for fusion reactor structural components, liquid metal containers of spallation neutron sources, and accelerator driven systems, with good radiation resistance and thermo-mechanical properties. However, e ...
Oxygen diffusion plays an important role in grain growth and densification during the sintering of alumina ceramics and governs high-temperature processes such as creep. The atomistic mechanism for oxygen diffusion in alumina is, however, still debated; at ...
The low thermal conductivity of nano-crystalline materials is commonly explained via diffusive scattering of phonons by internal boundaries. In this study, we have quantitatively studied phononcrystalline boundaries scattering and its effect on the overall ...