Stable count distributionIn probability theory, the stable count distribution is the conjugate prior of a one-sided stable distribution. This distribution was discovered by Stephen Lihn (Chinese: 藺鴻圖) in his 2017 study of daily distributions of the S&P 500 and the VIX. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it. Of the three parameters defining the distribution, the stability parameter is most important.
T-statisticIn statistics, the t-statistic is the ratio of the departure of the estimated value of a parameter from its hypothesized value to its standard error. It is used in hypothesis testing via Student's t-test. The t-statistic is used in a t-test to determine whether to support or reject the null hypothesis. It is very similar to the z-score but with the difference that t-statistic is used when the sample size is small or the population standard deviation is unknown.
S-expressionIn computer programming, an S-expression (or symbolic expression, abbreviated as sexpr or sexp) is an expression in a like-named notation for nested list (tree-structured) data. S-expressions were invented for and popularized by the programming language Lisp, which uses them for source code as well as data. In the usual parenthesized syntax of Lisp, an S-expression is classically defined as an atom of the form x, or an expression of the form (x . y) where x and y are S-expressions.
Multivariate analysis of varianceIn statistics, multivariate analysis of variance (MANOVA) is a procedure for comparing multivariate sample means. As a multivariate procedure, it is used when there are two or more dependent variables, and is often followed by significance tests involving individual dependent variables separately. Without relation to the image, the dependent variables may be k life satisfactions scores measured at sequential time points and p job satisfaction scores measured at sequential time points.
Let expressionIn computer science, a "let" expression associates a function definition with a restricted scope. The "let" expression may also be defined in mathematics, where it associates a Boolean condition with a restricted scope. The "let" expression may be considered as a lambda abstraction applied to a value. Within mathematics, a let expression may also be considered as a conjunction of expressions, within an existential quantifier which restricts the scope of the variable.
Tangent half-angle formulaIn trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle onto a line. Among these formulas are the following: From these one can derive identities expressing the sine, cosine, and tangent as functions of tangents of half-angles: Using double-angle formulae and the Pythagorean identity gives Taking the quotient of the formulae for sine and cosine yields Combining the Pythagorean identity with the double-angle formula for the cosine, rearranging, and taking the square roots yields and which, upon division gives Alternatively, It turns out that the absolute value signs in these last two formulas may be dropped, regardless of which quadrant α is in.
Root testIn mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series. It depends on the quantity where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one. It is particularly useful in connection with power series. The root test was developed first by Augustin-Louis Cauchy who published it in his textbook Cours d'analyse (1821). Thus, it is sometimes known as the Cauchy root test or Cauchy's radical test.