Plug-and-play state estimation and application to distributed output-feedback model predictive control
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper proposes a state estimator for large-scale linear systems described by the interaction of state-coupled subsystems affected by bounded disturbances. We equip each subsystem with a Local State Estimator (LSE) for the reconstruction of the subsyst ...
This paper proposes a state estimator for large-scale linear systems described by the interaction of state-coupled subsystems affected by bounded disturbances. We equip each subsystem with a Local State Estimator (LSE) for the reconstruction of the subsyst ...
In this paper we propose a novel partition-based state estimator for linear discrete-time systems composed of physically coupled subsystems affected by bounded disturbances. The proposed scheme is distributed in the sense that each local state estimator ex ...
We consider continuous-time sparse stochastic processes from which we have only a finite number of noisy/noiseless samples. Our goal is to estimate the noiseless samples (denoising) and the signal in-between (interpolation problem). By relying on tools fro ...
In this thesis, we treat robust estimation for the parameters of the Ornstein–Uhlenbeck process, which are the mean, the variance, and the friction. We start by considering classical maximum likelihood estimation. For the simulation study, where we also in ...
We study the problem of distributed least-squares estimation over ad hoc adaptive networks, where the nodes have a common objective to estimate and track a parameter vector. We consider the case where there is stationary additive colored noise on both the ...
Many recent algorithms for sparse signal recovery can be interpreted as maximum-a-posteriori (MAP) estimators relying on some specific priors. From this Bayesian perspective, state-of-the-art methods based on discrete-gradient regularizers, such as total-v ...
We propose a partition-based state estimator for linear discrete-time systems composed by coupled subsystems affected by bounded disturbances. The architecture is distributed in the sense that each subsystem is equipped with a local state estimator that ex ...
In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein-Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for sto ...
This paper proposes a state estimator for large-scale linear systems described by the interaction of state-coupled subsystems affected by bounded disturbances. We equip each subsystem with a Local State Estimator (LSE) for the reconstruction of the subsyst ...