Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Meeting the growing food demand with minimum impact on the environment is a major challenge to face for ensuring a more sustainable food production. To tackle this problem, in this article we present a novel systematic method for agriculture planning that optimally allocates rainfed and irrigated cropping areas, thereby enhancing food availability and reducing the environmental impact of agriculture. The allocation problem is mathematically formulated as a multi-objective linear programming problem that simultaneously accounts for the maximisation of the crop production and the minimisation of the environmental impact caused by water consumption. To quantify the environmental damage, life cycle assessment principles and water footprint concepts are integrated into the model. The capabilities of our tool are illustrated through its application to a real case study that considers wheat production in Spain. The results show that the current allocation of rainfed and irrigated wheat areas in Spain is sub-optimal. Our tool provides a set of alternatives for optimally reallocating these wheat areas that ultimately achieve significant reductions in environmental impact while maintaining or even increasing the production level. The analysis clearly demonstrates that the optimal allocation of rainfed and irrigated cropping areas is a potential pathway to minimise the environmental impact of water consumption in food production. Our systematic decision-support tool aims to assist famers and policy-makers in the transition towards a more sustainable agricultural sector. (C) 2016 Elsevier Ltd. All rights reserved.
Josephine Anna Eleanor Hughes, Kai Christian Junge