Publication

Soft robotics for farm to fork: applications in agriculture & farming

Abstract

Agricultural tasks and environments range from harsh field conditions with semi-structured produce or animals, through to post-processing tasks in food-processing environments. From farm to fork, the development and application of soft robotics offers a plethora of potential uses. Robust yet compliant interactions between farm produce and machines will enable new capabilities and optimize existing processes. There is also an opportunity to explore how modeling tools used in soft robotics can be applied to improve our representation and understanding of the soft and compliant structures common in agriculture. In this review, we seek to highlight the potential for soft robotics technologies within the food system, and also the unique challenges that must be addressed when developing soft robotics systems for this problem domain. We conclude with an outlook on potential directions for meaningful and sustainable impact, and also how our outlook on both soft robotics and agriculture must evolve in order to achieve the required paradigm shift.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Soft robotics
Soft robotics is a subfield of robotics that concerns the design, control, and fabrication of robots composed of compliant materials, instead of rigid links. In contrast to rigid-bodied robots built from metals, ceramics and hard plastics, the compliance of soft robots can improve their safety when working in close contact with humans. The goal of soft robotics is the design and construction of robots with physically flexible bodies and electronics. Sometimes softness is limited to part of the machine.
Sustainable agriculture
Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business process and farming practices.
Robotics
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Show more
Related publications (49)

Soft Robotics: A Route to Equality, Diversity, and Inclusivity in Robotics

Josephine Anna Eleanor Hughes

Robotics is entering our daily lives. The discipline is increasingly crucial in fields such as agriculture, medicine, and rescue operations, impacting our food, health, and planet. At the same time, it is becoming evident that robotic research must embrace ...
Mary Ann Liebert, Inc2024

Geospatial Tools and Remote Sensing Strategies for Timely Humanitarian Response: A Case Study on Drought Monitoring in Eswatini

Jérôme Chenal

This article explores the escalating impact of natural disasters, particularly droughts, in the Southern African Development Community (SADC), with a specific focus on Eswatini. Over the last century, approximately 63 million people in SADC countries have ...
Basel2024

Soft Robot Shape Estimation With IMUs Leveraging PCC Kinematics for Drift Filtering

Josephine Anna Eleanor Hughes, Francesco Stella

The control possibilities for soft robots have long been hindered by the need for reliable methods to estimate their configuration. Inertial measurement units (IMUs) can solve this challenge, but they are affected by well-known drift issues. This letter pr ...
Piscataway2024
Show more
Related MOOCs (4)
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Il robot Thymio come strumento di scoperta delle scienze digitali
In questo corso, imparerai a utilizzare il robot Thymio e ad usarlo come strumento didattico per introdurre nella tua classe i principali concetti appartenenti al mondo digitale e al pensiero computaz
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.