Polynomials Vanishing On Cartesian Products: The Elekes-Szabo Theorem Revisited
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
Without resorting to complex numbers or any advanced topological arguments, we show that any real polynomial of degree greater than two always has a real quadratic polynomial factor, which is equivalent to the fundamental theorem of algebra. The proof uses ...
Background: The increasingly common applications of machine-learning schemes to atomic-scale simulations have triggered efforts to better understand the mathematical properties of the mapping between the Cartesian coordinates of the atoms and the variety o ...
We obtain new results pertaining to convergence and recurrence of multiple ergodic averages along functions from a Hardy field. Among other things, we confirm some of the conjectures posed by Frantzikinakis in [Fra10; Fra16] and obtain combinatorial applic ...
In this paper, we consider the first eigenvalue.1(O) of the Grushin operator.G :=.x1 + |x1|2s.x2 with Dirichlet boundary conditions on a bounded domain O of Rd = R d1+ d2. We prove that.1(O) admits a unique minimizer in the class of domains with prescribed ...
We establish new recurrence and multiple recurrence results for a rather large family of non-polynomial functions which contains tempered functions and (non-polynomial) functions from a Hardy field with polynomial growth. In particular, we show that, somew ...
The evaluation of small degree polynomials is critical for the computation of elementary functions. It has been extensively studied and is well documented. In this article, we evaluate existing methods for polynomial evaluation on superscalar architecture. ...
A decomposition of multicorrelation sequences for commuting transformations along primes, Discrete Analysis 2021:4, 27 pp. Szemerédi's theorem asserts that for every positive integer k and every δ>0 there exists n such that every subset of ${1, ...
We devise a Hybrid High-Order (HHO) method for highly oscillatory elliptic problems that is capable of handling general meshes. The method hinges on discrete unknowns that are polynomials attached to the faces and cells of a coarse mesh; those attached to ...
We propose and analyse randomized cubature formulae for the numerical integration of functions with respect to a given probability measure μ defined on a domain Γ⊆ℝ^d, in any dimension d. Each cubature formula is conceived to be exact on a given finite dim ...