Principle and modelling of Transient Current Technique for interface traps characterization in monolithic pixel detectors obtained by CMOS-compatible wafer bonding
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
Modeling the interaction of ionizing radiation, either light or ions, in integrated circuits is essential for the development and optimization of optoelectronic devices and of radiation-tolerant circuits. Whereas for optical sensors photogenerated carriers ...
This thesis aims at demonstrating a novel technique for the characterization of interfaces obtained by a CMOS-compatible Surface Activated Bonding (SAB) process between silicon wafers. This enables the optimization of the two main components of monolithic ...
The field of micro electromechanical systems (MEMS) evolved from the microelectronic industry and the technologies developed to fabricate integrated circuits. As a result, MEMS are commonly fabricated on silicon wafers. The development of MEMS has been dri ...
The effects of extreme radiation levels on the electrical resistivity of metal thin films made of copper were studied by means of electrical measurements and post irradiation imaging. Different 3x3 mm(2) chips were produced by depositing 500 nm of meander ...
Combining optical gain in direct-bandgap III-V materials with tunable optical feedback offered by advanced photonic integrated circuits is key to chip-scale external-cavity lasers (ECL), offering wideband tunability along with low optical linewidths. Exter ...
Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and ...
Like integrated electronics, integrated photonics such as Silicon Photonics benefit from increased device-density on a single chip. Silicon is an excellent material for integrated photonics because its high refractive index allows devices to be made small, ...
DC-DC converters based on Application Specific Integrated Circuits (ASICs) have been developed in this doctoral work for the High-Luminosity Large Hadron Collider (HL-LHC) experiments at CERN. They step down the voltage from a 2.5 V line and supply a load ...
Silicon (Si) photonic micro-electro-mechanical systems (MEMS), with its low-power phase shifters and tunable couplers, is emerging as a promising technology for large-scale reconfigurable photonics with potential applications for example in photonic accele ...