TupleIn mathematics, a tuple is a finite sequence or ordered list of numbers or, more generally, mathematical objects, which are called the elements of the tuple. An n-tuple is a tuple of n elements, where n is a non-negative integer. There is only one 0-tuple, called the empty tuple. A 1-tuple and a 2-tuple are commonly called respectively a singleton and an ordered pair. Tuple may be formally defined from ordered pairs by recurrence by starting from ordered pairs; indeed, a n-tuple can be identified with the ordered pair of its (n − 1) first elements and its nth element.
Polynomial-time approximation schemeIn computer science (particularly algorithmics), a polynomial-time approximation scheme (PTAS) is a type of approximation algorithm for optimization problems (most often, NP-hard optimization problems). A PTAS is an algorithm which takes an instance of an optimization problem and a parameter ε > 0 and produces a solution that is within a factor 1 + ε of being optimal (or 1 – ε for maximization problems). For example, for the Euclidean traveling salesman problem, a PTAS would produce a tour with length at most (1 + ε)L, with L being the length of the shortest tour.
Universal vertexIn graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph. (It is not to be confused with a universally quantified vertex in the logic of graphs.) A graph that contains a universal vertex may be called a cone. In this context, the universal vertex may also be called the apex of the cone.
Parameterized approximation algorithmA parameterized approximation algorithm is a type of algorithm that aims to find approximate solutions to NP-hard optimization problems in polynomial time in the input size and a function of a specific parameter. These algorithms are designed to combine the best aspects of both traditional approximation algorithms and fixed-parameter tractability. In traditional approximation algorithms, the goal is to find solutions that are at most a certain factor away from the optimal solution, known as an -approximation, in polynomial time.
Approximation algorithmIn computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time.
Vizing's theoremIn graph theory, Vizing's theorem states that every simple undirected graph may be edge colored using a number of colors that is at most one larger than the maximum degree Δ of the graph. At least Δ colors are always necessary, so the undirected graphs may be partitioned into two classes: "class one" graphs for which Δ colors suffice, and "class two" graphs for which Δ + 1 colors are necessary. A more general version of Vizing's theorem states that every undirected multigraph without loops can be colored with at most Δ+μ colors, where μ is the multiplicity of the multigraph.
Low (complexity)In computational complexity theory, a language B (or a complexity class B) is said to be low for a complexity class A (with some reasonable relativized version of A) if AB = A; that is, A with an oracle for B is equal to A. Such a statement implies that an abstract machine which solves problems in A achieves no additional power if it is given the ability to solve problems in B at unit cost. In particular, this means that if B is low for A then B is contained in A.
Bounded setIn mathematical analysis and related areas of mathematics, a set is called bounded if it is, in a certain sense, of finite measure. Conversely, a set which is not bounded is called unbounded. The word "bounded" makes no sense in a general topological space without a corresponding metric. Boundary is a distinct concept: for example, a circle in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. A bounded set is not necessarily a closed set and vice versa.
SubsetIn mathematics, set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B. The relationship of one set being a subset of another is called inclusion (or sometimes containment). A is a subset of B may also be expressed as B includes (or contains) A or A is included (or contained) in B. A k-subset is a subset with k elements. The subset relation defines a partial order on sets.
Matching (graph theory)In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem. Given a graph G = (V, E), a matching M in G is a set of pairwise non-adjacent edges, none of which are loops; that is, no two edges share common vertices.