Concept

Universal vertex

Summary
In graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph. (It is not to be confused with a universally quantified vertex in the logic of graphs.) A graph that contains a universal vertex may be called a cone. In this context, the universal vertex may also be called the apex of the cone. However, this terminology conflicts with the terminology of apex graphs, in which an apex is a vertex whose removal leaves a planar subgraph. The stars are exactly the trees that have a universal vertex, and may be constructed by adding a universal vertex to an independent set. The wheel graphs, similarly, may be formed by adding a universal vertex to a cycle graph. In geometry, the three-dimensional pyramids have wheel graphs as their skeletons, and more generally the graph of any higher-dimensional pyramid has a universal vertex as the apex of the pyramid. The trivially perfect graphs (the comparability graphs of order-theoretic trees) always contain a universal vertex, the root of the tree, and more strongly they may be characterized as the graphs in which every connected induced subgraph contains a universal vertex. The connected threshold graphs form a subclass of the trivially perfect graphs, so they also contain a universal vertex; they may be defined as the graphs that can be formed by repeated addition of either a universal vertex or an isolated vertex (one with no incident edges). The friendship theorem of states that, if every two vertices in a finite graph have exactly one shared neighbor, then the graph contains a universal vertex. The graphs described by this theorem are the friendship graphs, formed by systems of triangles connected together at a common shared vertex, the universal vertex. Every graph with a universal vertex is a dismantlable graph, meaning that it can be reduced to a single vertex by repeatedly removing vertices whose closed neighborhoods are subsets of other vertices' closed neighborhoods.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.