Torsion-free abelian groupIn mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only element with finite order. While finitely generated abelian groups are completely classified, not much is known about infinitely generated abelian groups, even in the torsion-free countable case. Abelian group An abelian group is said to be torsion-free if no element other than the identity is of finite order.
Hamming spaceIn statistics and coding theory, a Hamming space (named after American mathematician Richard Hamming) is usually the set of all binary strings of length N. It is used in the theory of coding signals and transmission. More generally, a Hamming space can be defined over any alphabet (set) Q as the set of words of a fixed length N with letters from Q. If Q is a finite field, then a Hamming space over Q is an N-dimensional vector space over Q. In the typical, binary case, the field is thus GF(2) (also denoted by Z2).
Malleability (cryptography)Malleability is a property of some cryptographic algorithms. An encryption algorithm is "malleable" if it is possible to transform a ciphertext into another ciphertext which decrypts to a related plaintext. That is, given an encryption of a plaintext , it is possible to generate another ciphertext which decrypts to , for a known function , without necessarily knowing or learning . Malleability is often an undesirable property in a general-purpose cryptosystem, since it allows an attacker to modify the contents of a message.
Multiplicative groupIn mathematics and group theory, the term multiplicative group refers to one of the following concepts: the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, the algebraic torus GL(1).. The multiplicative group of integers modulo n is the group under multiplication of the invertible elements of .
Pre-abelian categoryIn mathematics, specifically in , a pre-abelian category is an that has all and . Spelled out in more detail, this means that a category C is pre-abelian if: C is , that is over the of abelian groups (equivalently, all hom-sets in C are abelian groups and composition of morphisms is bilinear); C has all finite (equivalently, all finite coproducts); note that because C is also preadditive, finite products are the same as finite coproducts, making them biproducts; given any morphism f: A → B in C, the equaliser of f and the zero morphism from A to B exists (this is by definition the kernel of f), as does the coequaliser (this is by definition the cokernel of f).
Block cipherIn cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key.
Abelian categoryIn mathematics, an abelian category is a in which morphisms and can be added and in which s and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the , Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are and they satisfy the snake lemma.
Semantic securityIn cryptography, a semantically secure cryptosystem is one where only negligible information about the plaintext can be feasibly extracted from the ciphertext. Specifically, any probabilistic, polynomial-time algorithm (PPTA) that is given the ciphertext of a certain message (taken from any distribution of messages), and the message's length, cannot determine any partial information on the message with probability non-negligibly higher than all other PPTA's that only have access to the message length (and not the ciphertext).
Abelian varietyIn mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined over that field.
Message authentication codeIn cryptography, a message authentication code (MAC), sometimes known as an authentication tag, is a short piece of information used for authenticating a message. In other words, to confirm that the message came from the stated sender (its authenticity) and has not been changed. The MAC value protects a message's data integrity, as well as its authenticity, by allowing verifiers (who also possess the secret key) to detect any changes to the message content.