Zero morphismIn , a branch of mathematics, a zero morphism is a special kind of morphism exhibiting properties like the morphisms to and from a zero object. Suppose C is a , and f : X → Y is a morphism in C. The morphism f is called a constant morphism (or sometimes left zero morphism) if for any W in C and any g, h : W → X, fg = fh. Dually, f is called a coconstant morphism (or sometimes right zero morphism) if for any object Z in C and any g, h : Y → Z, gf = hf. A zero morphism is one that is both a constant morphism and a coconstant morphism.
Étale morphismIn algebraic geometry, an étale morphism (etal) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.
Relative homologyIn algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace. Given a subspace , one may form the short exact sequence where denotes the singular chains on the space X. The boundary map on descends to and therefore induces a boundary map on the quotient.
Morphism of schemesIn algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes. A morphism of algebraic stacks generalizes a morphism of schemes. By definition, a morphism of schemes is just a morphism of locally ringed spaces. A scheme, by definition, has open affine charts and thus a morphism of schemes can also be described in terms of such charts (compare the definition of morphism of varieties).
Morphism of algebraic varietiesIn algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
Smooth morphismIn algebraic geometry, a morphism between schemes is said to be smooth if (i) it is locally of finite presentation (ii) it is flat, and (iii) for every geometric point the fiber is regular. (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
Complemented subspaceIn the branch of mathematics called functional analysis, a complemented subspace of a topological vector space is a vector subspace for which there exists some other vector subspace of called its (topological) complement in , such that is the direct sum in the category of topological vector spaces. Formally, topological direct sums strengthen the algebraic direct sum by requiring certain maps be continuous; the result retains many nice properties from the operation of direct sum in finite-dimensional vector spaces.
Simplicial homologyIn algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components (the case of dimension 0). Simplicial homology arose as a way to study topological spaces whose building blocks are n-simplices, the n-dimensional analogs of triangles. This includes a point (0-simplex), a line segment (1-simplex), a triangle (2-simplex) and a tetrahedron (3-simplex).
Diagram (category theory)In , a branch of mathematics, a diagram is the categorical analogue of an indexed family in set theory. The primary difference is that in the categorical setting one has morphisms that also need indexing. An indexed family of sets is a collection of sets, indexed by a fixed set; equivalently, a function from a fixed index set to the class of sets. A diagram is a collection of objects and morphisms, indexed by a fixed category; equivalently, a functor from a fixed index category to some category.
Direct product of groupsIn mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics. In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted .