Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We develop structure-preserving reduced basis methods for a large class of nondissipative problems by resorting to their formulation as Hamiltonian dynamical systems. With this perspective, the phase space is naturally endowed with a Poisson manifold struc ...
This work proposes an adaptive structure-preserving model order reduction method for finite-dimensional parametrized Hamiltonian systems modeling non-dissipative phenomena. To overcome the slowly decaying Kolmogorov width typical of transport problems, the ...
In the recent years, considerable attention has been paid to preserving structures and invariants in reduced basis methods, in order to enhance the stability and robustness of the reduced system. In the context of Hamiltonian systems, symplectic model redu ...
We consider model order reduction of parameterized Hamiltonian systems describing nondissipative phenomena, like wave-type and transport dominated problems. The development of reduced basis methods for such models is challenged by two main factors: the ric ...
2019
We study the symplectic Howe duality using two new and independent combinatorial methods: via determinantal formulae on the one hand, and via (bi)crystals on the other hand. The first approach allows us to establish a generalised version where weight multi ...
2022
,
We develop structure-preserving reduced basis methods for a large class of nondissipative problems by resorting to their formulation as Hamiltonian dynamical systems. With this perspective, the phase space is naturally endowed with a Poisson manifold struc ...
2018
,
We revisit the statistical mechanics of charge fluctuations in capacitors. In constant-potential classical molecular simulations, the atomic charges of electrode atoms are treated as additional degrees of freedom which evolve in time so as to satisfy the c ...
2020
In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high ...
EPFL2022
, ,
Edible robotics is an emerging research field with potential use in environmental, food, and medical scenarios. In this context, the design of edible control circuits could increase the behavioral complexity of edible robots and reduce their dependence on ...
IEEE2023
,
We develop structure-preserving reduced basis methods for a large class of problems by resorting to their semi-discrete formulation as Hamiltonian dynamical systems. In this perspective, the phase space is naturally endowed with a Poisson manifold structur ...