Generic programmingGeneric programming is a style of computer programming in which algorithms are written in terms of data types to-be-specified-later that are then instantiated when needed for specific types provided as parameters. This approach, pioneered by the ML programming language in 1973, permits writing common functions or types that differ only in the set of types on which they operate when used, thus reducing duplicate code. Generics was introduced to the main-stream programming with Ada in 1977 and then with templates in C++ it became part of the repertoire of professional library design.
Intuitionistic type theoryIntuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory) is a type theory and an alternative foundation of mathematics. Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician and philosopher, who first published it in 1972. There are multiple versions of the type theory: Martin-Löf proposed both intensional and extensional variants of the theory and early impredicative versions, shown to be inconsistent by Girard's paradox, gave way to predicative versions.
Top typeIn mathematical logic and computer science, some type theories and type systems include a top type that is commonly denoted with top or the symbol ⊤. The top type is sometimes called also universal type, or universal supertype as all other types in the type system of interest are subtypes of it, and in most cases, it contains every possible object of the type system. It is in contrast with the bottom type, or the universal subtype, which every other type is supertype of and it is often that the type contains no members at all.
Theory of categoriesIn ontology, the theory of categories concerns itself with the categories of being: the highest genera or kinds of entities according to Amie Thomasson. To investigate the categories of being, or simply categories, is to determine the most fundamental and the broadest classes of entities. A distinction between such categories, in making the categories or applying them, is called an ontological distinction. Various systems of categories have been proposed, they often include categories for substances, properties, relations, states of affairs or events.