GénéricitéEn programmation, la généricité (ou programmation générique), consiste à définir des algorithmes identiques opérant sur des données de types différents. On définit de cette façon des procédures ou des types entiers génériques. On pourrait ainsi programmer une pile, ou une procédure qui prend l'élément supérieur de la pile, indépendamment du type de données contenues. C'est donc une forme de polymorphisme, le « polymorphisme de type » dit aussi « paramétrage de type » : en effet, le type de donnée général (abstrait) apparaît comme un paramètre des algorithmes définis, avec la particularité que ce paramètre-là est un type.
Intuitionistic type theoryIntuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory) is a type theory and an alternative foundation of mathematics. Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician and philosopher, who first published it in 1972. There are multiple versions of the type theory: Martin-Löf proposed both intensional and extensional variants of the theory and early impredicative versions, shown to be inconsistent by Girard's paradox, gave way to predicative versions.
Top typeIn mathematical logic and computer science, some type theories and type systems include a top type that is commonly denoted with top or the symbol ⊤. The top type is sometimes called also universal type, or universal supertype as all other types in the type system of interest are subtypes of it, and in most cases, it contains every possible object of the type system. It is in contrast with the bottom type, or the universal subtype, which every other type is supertype of and it is often that the type contains no members at all.
Theory of categoriesIn ontology, the theory of categories concerns itself with the categories of being: the highest genera or kinds of entities according to Amie Thomasson. To investigate the categories of being, or simply categories, is to determine the most fundamental and the broadest classes of entities. A distinction between such categories, in making the categories or applying them, is called an ontological distinction. Various systems of categories have been proposed, they often include categories for substances, properties, relations, states of affairs or events.