Boolean satisfiability problemIn logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the formula is called satisfiable.
Golden rectangleIn geometry, a golden rectangle is a rectangle whose side lengths are in the golden ratio, , which is (the Greek letter phi), where is approximately 1.618. Golden rectangles exhibit a special form of self-similarity: All rectangles created by adding or removing a square from an end are golden rectangles as well. A golden rectangle can be constructed with only a straightedge and compass in four simple steps: Draw a square. Draw a line from the midpoint of one side of the square to an opposite corner.
Semidefinite programmingSemidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron. Semidefinite programming is a relatively new field of optimization which is of growing interest for several reasons. Many practical problems in operations research and combinatorial optimization can be modeled or approximated as semidefinite programming problems.
Ordinal numberIn set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, nth, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element").
Convex optimizationConvex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.
Duality (optimization)In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then the dual is a maximization problem (and vice versa). Any feasible solution to the primal (minimization) problem is at least as large as any feasible solution to the dual (maximization) problem.
Hardness of approximationIn computer science, hardness of approximation is a field that studies the algorithmic complexity of finding near-optimal solutions to optimization problems. Hardness of approximation complements the study of approximation algorithms by proving, for certain problems, a limit on the factors with which their solution can be efficiently approximated. Typically such limits show a factor of approximation beyond which a problem becomes NP-hard, implying that finding a polynomial time approximation for the problem is impossible unless NP=P.
PolynomialIn mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1. Polynomials appear in many areas of mathematics and science.
Parameterized complexityIn computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input.
Golden spiralIn geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes. There are several comparable spirals that approximate, but do not exactly equal, a golden spiral. For example, a golden spiral can be approximated by first starting with a rectangle for which the ratio between its length and width is the golden ratio.