Additional hox clusters in the zebrafish: Divergent expression patterns belie equivalent activities of duplicate hoxB5 genes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Hox genes control many aspects of embryonic development in metazoans. Previous analyses of this gene family revealed a surprising diversity in terms of gene number and organization between various animal species. In vertebrates, Hox genes are grouped into ...
HOX transcription factors determine the identity of body regions along the rostro-caudal axis during bilaterian embryogenesis. In vertebrates Hox genes distinctively lie organized in dense clusters, each typically composed of a dozen paralogous transcripti ...
Hox genes encode transcription factors (TFs) that establish morphological diversity in the developing embryo. The similar DNA-binding motifs of the various HOX TFs contrast with the wide-range of HOX-dependent genetic programs. The influence of the chromat ...
The evolution of chordates was accompanied by critical anatomical innovations in craniofacial development, along with the emergence of neural crest cells. The potential of these cells to implement a craniofacial program in part depends upon the (non-)expre ...
Hox genes are major determinants of the animal body plan, where they organize structures along both the trunk and appendicular axes. During mouse limb development, Hoxd genes are transcribed in two waves: early on, when the arm and forearm are specified, a ...
During embryonic development, Hox genes participate in the building of a functional digestive system in metazoans, and genetic conditions involving these genes lead to important, sometimes lethal,growth retardation. Recently, this phenotype was obtained af ...
Proceedings of the National Academy of Sciences2017
Hox genes are central to the specification of structures along the anterior-posterior body axis, and modifications in their expression have paralleled the emergence of diversity in vertebrate body plans. Here we describe the genomic organization of Hox clu ...
Hox genes control many aspects of embryonic development in metazoans. Previous analyses of this gene family has revealed a surprising diversity in terms of gene number and organization between various animal species. In vertebrates, Hox genes are grouped i ...
In vertebrates, face and throat structures, such as jaw, hyoid and thyroid cartilages develop from a rostrocaudal metameric series of pharyngeal arches, colonized by cranial neural crest cells (NCCs). Colinear Hox gene expression patterns underlie arch spe ...
During the trunk-to-tail transition, axial progenitors relocate from the epiblast to the tail bud. Here, we show that this process entails a major regulatory switch, bringing tail bud progenitors under Gdf11 signaling control. Gdf11 mutant embryos have an ...