Group of Lie typeIn mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.
General linear groupIn mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position.
Projective linear groupIn mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
Linear algebraLinear algebra is the branch of mathematics concerning linear equations such as: linear maps such as: and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions.
Signature (topology)In the field of topology, the signature is an integer invariant which is defined for an oriented manifold M of dimension divisible by four. This invariant of a manifold has been studied in detail, starting with Rokhlin's theorem for 4-manifolds, and Hirzebruch signature theorem. Given a connected and oriented manifold M of dimension 4k, the cup product gives rise to a quadratic form Q on the 'middle' real cohomology group The basic identity for the cup product shows that with p = q = 2k the product is symmetric.
Unitary groupIn mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1, under multiplication.
Arf invariantIn mathematics, the Arf invariant of a nonsingular quadratic form over a field of characteristic 2 was defined by Turkish mathematician when he started the systematic study of quadratic forms over arbitrary fields of characteristic 2. The Arf invariant is the substitute, in characteristic 2, for the discriminant for quadratic forms in characteristic not 2. Arf used his invariant, among others, in his endeavor to classify quadratic forms in characteristic 2.
Invariant theoryInvariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are invariant, under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.
Witt's theorem"Witt's theorem" or "the Witt theorem" may also refer to the Bourbaki–Witt fixed point theorem of order theory. In mathematics, Witt's theorem, named after Ernst Witt, is a basic result in the algebraic theory of quadratic forms: any isometry between two subspaces of a nonsingular quadratic space over a field k may be extended to an isometry of the whole space. An analogous statement holds also for skew-symmetric, Hermitian and skew-Hermitian bilinear forms over arbitrary fields.
Binary quadratic formIn mathematics, a binary quadratic form is a quadratic homogeneous polynomial in two variables where a, b, c are the coefficients. When the coefficients can be arbitrary complex numbers, most results are not specific to the case of two variables, so they are described in quadratic form. A quadratic form with integer coefficients is called an integral binary quadratic form, often abbreviated to binary quadratic form. This article is entirely devoted to integral binary quadratic forms.