Summary
In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups. The name "groups of Lie type" is due to the close relationship with the (infinite) Lie groups, since a compact Lie group may be viewed as the rational points of a reductive linear algebraic group over the field of real numbers. and are standard references for groups of Lie type. Classical group An initial approach to this question was the definition and detailed study of the so-called classical groups over finite and other fields by . These groups were studied by L. E. Dickson and Jean Dieudonné. Emil Artin investigated the orders of such groups, with a view to classifying cases of coincidence. A classical group is, roughly speaking, a special linear, orthogonal, symplectic, or unitary group. There are several minor variations of these, given by taking derived subgroups or central quotients, the latter yielding projective linear groups. They can be constructed over finite fields (or any other field) in much the same way that they are constructed over the real numbers. They correspond to the series An, Bn, Cn, Dn,2An, 2Dn of Chevalley and Steinberg groups. Chevalley groups can be thought of as Lie groups over finite fields. The theory was clarified by the theory of algebraic groups, and the work of on Lie algebras, by means of which the Chevalley group concept was isolated. Chevalley constructed a Chevalley basis (a sort of integral form but over finite fields) for all the complex simple Lie algebras (or rather of their universal enveloping algebras), which can be used to define the corresponding algebraic groups over the integers.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood