Summary
In the field of topology, the signature is an integer invariant which is defined for an oriented manifold M of dimension divisible by four. This invariant of a manifold has been studied in detail, starting with Rokhlin's theorem for 4-manifolds, and Hirzebruch signature theorem. Given a connected and oriented manifold M of dimension 4k, the cup product gives rise to a quadratic form Q on the 'middle' real cohomology group The basic identity for the cup product shows that with p = q = 2k the product is symmetric. It takes values in If we assume also that M is compact, Poincaré duality identifies this with which can be identified with . Therefore the cup product, under these hypotheses, does give rise to a symmetric bilinear form on H2k(M,R); and therefore to a quadratic form Q. The form Q is non-degenerate due to Poincaré duality, as it pairs non-degenerately with itself. More generally, the signature can be defined in this way for any general compact polyhedron with 4n-dimensional Poincaré duality. The signature of M is by definition the signature of Q, that is, where any diagonal matrix defining Q has positive entries and negative entries. If M is not connected, its signature is defined to be the sum of the signatures of its connected components. If M has dimension not divisible by 4, its signature is usually defined to be 0. There are alternative generalization in L-theory: the signature can be interpreted as the 4k-dimensional (simply connected) symmetric L-group or as the 4k-dimensional quadratic L-group and these invariants do not always vanish for other dimensions. The Kervaire invariant is a mod 2 (i.e., an element of ) for framed manifolds of dimension 4k+2 (the quadratic L-group ), while the de Rham invariant is a mod 2 invariant of manifolds of dimension 4k+1 (the symmetric L-group ); the other dimensional L-groups vanish. Kervaire invariant When is twice an odd integer (singly even), the same construction gives rise to an antisymmetric bilinear form.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.