Publication

Interactive Locomotion of Mechanically Coupled Bipedal Agents: Modeling and Experiments

Auke Ijspeert, Jessica Lanini
2017
Conference paper
Abstract

This paper investigates the interactive locomotion for physically coupled bipedal agents using a human-human object carrying experiment and a simple mathematical model. The model is based on the Spring Loaded Inverted Pendulum (SLIP) and on the assumption that the coupling can be modeled as a spring-damper. By setting appropriate parameters, the model can achieve stable walking gaits and coordinated foot-fall patterns. Human-human interactive locomotion data are also analyzed in order to evaluate how the model can be useful to investigate humans' interaction. The kinematic study of how the rigid coupling between two humans can influence their own behaviour is presented for the first time to our knowledge. Moreover a good match between experimental and model data emerges from the comparison between several gait parameters.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.