Interactive Locomotion of Mechanically Coupled Bipedal Agents: Modeling and Experiments
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Sprawling posture robots are characterized by upper limb segments protruding horizontally from the body, resulting in lower body height and wider support on the ground. Combined with an actuated segmented spine and tail, such morphology resembles that of s ...
Quadrupeds achieve rapid and highly adaptive locomotion owing to the coordination between their legs and other body parts such as their trunk, head, and tail, i.e. body-limb coordination. Therefore, a better understanding of the mechanism underlying body-l ...
The study provides derivation and application of novel formula for the calculation of general imposed constraints for kinematic chains (including mechanisms and zero-degrees-of-freedom Assur groups) depending on the types of kinematic pairs and numbers of ...
In this paper, we present a simple control framework for online push recovery on biped robots with dynamic stepping properties. Owing to relatively heavy legs in our humanoid robot COMAN, we use a linear model called 3LP, which is composed of three pendulu ...
This paper presents an algorithm to calculate mechanical stability margins of a Modular Snake Robot (MSR) during scouting poses. Scouting poses are defined as robot configurations in which one or two of the end modules of the robot are raised up to increas ...
The synthesis of shoulder kinematics, either for simulation in a model or imitation in a robot, is a challenging task because of the contact between shoulder blade and ribcage. As the shoulder moves, the shoulder blade glides over the ribcage. In kinematic ...
Bipedal locomotion is a challenging task in the sense that it requires to maintain dynamic balance while steering the gait in potentially complex environments. Yet, humans usually manage to move without any apparent difficulty, even on rough terrains. This ...
Deciphering how quadrupeds coordinate their legs and other body parts, such as the trunk, head, and tail (i.e., body-limb coordination), can provide informative insights to improve legged robot mobility. In this study, we focused on sprawling locomotion of ...
Thanks to better actuator technologies and control algorithms, humanoid robots to date can perform a wide range of locomotion activities outside lab environments. These robots face various control challenges like high dimensionality, contact switches durin ...
Abstract: We present an algorithm that generates walking motions for quadruped robots without the use of an explicit footstep planner by simultaneously optimizing over both the Center of Mass (CoM) trajectory and the footholds. Feasibility is achieved by i ...