Publication

A Non-Euclidean Gradient Descent Framework for Non-Convex Matrix Factorization

Abstract

We study convex optimization problems that feature low-rank matrix solutions. In such scenarios, non-convex methods offer significant advantages over convex methods due to their lower space complexity as well as faster convergence speed. Moreover, many of these methods feature rigorous approximation guarantees. Non-convex algorithms are simple to analyze and implement as they perform Euclidean gradient descent on matrix factors. In contrast, this paper derives non-Euclidean optimization frame- work in the non-convex setting that takes nonlinear gradient steps on the factors. We prove convergence rates to the global minimum under appropriate assumptions. We provide numerical evidence with Fourier Ptychography and FastText applications using real data that shows our approach can significantly enhance solution quality

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.