Publication

Tailor-Making Low-Cost Spiro[fluorene-9,9 '-xanthene]-Based 3D Oligomers for Perovskite Solar Cells

Abstract

The power-conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have increased rapidly from about 4% to 22% during the past few years. One of the major challenges for further improvement of the efficiency of PSCs is the lack of sufficiently good hole transport materials (HTMs) to efficiently scavenge the photogenerated holes and aid the transport of the holes to the counter-electrode in the PSCs. In this study, we tailor-made two low-cost spiro[fluorene-9,9'-xanthene] (SFX)-based 3D oligomers, termed X54 and X55, by using a one-pot synthesis approach for PSCs. One of the HTMs, X55, gives a much deeper HOMO level and a higher hole mobility and conductivity than the state-of-theart HTM, Spiro-OMeTAD. PSC devices based on X55 as the HTM show a very impressive PCE of 20.8% under 100mW.cm(-2) AM1.5G solar illumination, which is much higher than the PCE of the reference devices based on Spiro-OMeTAD (18.8%) and X54 (13.6%) under the same conditions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.