Total ring of fractionsIn abstract algebra, the total quotient ring or total ring of fractions is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings R that may have zero divisors. The construction embeds R in a larger ring, giving every non-zero-divisor of R an inverse in the larger ring. If the homomorphism from R to the new ring is to be injective, no further elements can be given an inverse. Let be a commutative ring and let be the set of elements which are not zero divisors in ; then is a multiplicatively closed set.
Degenerate bilinear formIn mathematics, specifically linear algebra, a degenerate bilinear form f (x, y ) on a vector space V is a bilinear form such that the map from V to V∗ (the dual space of V ) given by v ↦ (x ↦ f (x, v )) is not an isomorphism. An equivalent definition when V is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero x in V such that for all A nondegenerate or nonsingular form is a bilinear form that is not degenerate, meaning that is an isomorphism, or equivalently in finite dimensions, if and only if for all implies that .
ParavectorThe name paravector is used for the combination of a scalar and a vector in any Clifford algebra, known as geometric algebra among physicists. This name was given by J. G. Maks in a doctoral dissertation at Technische Universiteit Delft, Netherlands, in 1989. The complete algebra of paravectors along with corresponding higher grade generalizations, all in the context of the Euclidean space of three dimensions, is an alternative approach to the spacetime algebra (STA) introduced by David Hestenes.
Duality (projective geometry)In geometry, a striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this concept. There are two approaches to the subject of duality, one through language () and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration.