Concept

Degenerate bilinear form

Summary
In mathematics, specifically linear algebra, a degenerate bilinear form f (x, y ) on a vector space V is a bilinear form such that the map from V to V∗ (the dual space of V ) given by v ↦ (x ↦ f (x, v )) is not an isomorphism. An equivalent definition when V is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero x in V such that for all A nondegenerate or nonsingular form is a bilinear form that is not degenerate, meaning that is an isomorphism, or equivalently in finite dimensions, if and only if for all implies that . The most important examples of nondegenerate forms are inner products and symplectic forms. Symmetric nondegenerate forms are important generalizations of inner products, in that often all that is required is that the map be an isomorphism, not positivity. For example, a manifold with an inner product structure on its tangent spaces is a Riemannian manifold, while relaxing this to a symmetric nondegenerate form yields a pseudo-Riemannian manifold. If V is finite-dimensional then, relative to some basis for V, a bilinear form is degenerate if and only if the determinant of the associated matrix is zero – if and only if the matrix is singular, and accordingly degenerate forms are also called singular forms. Likewise, a nondegenerate form is one for which the associated matrix is non-singular, and accordingly nondegenerate forms are also referred to as non-singular forms. These statements are independent of the chosen basis. If for a quadratic form Q there is a non-zero vector v ∈ V such that Q(v) = 0, then Q is an isotropic quadratic form. If Q has the same sign for all non-zero vectors, it is a definite quadratic form or an anisotropic quadratic form. There is the closely related notion of a unimodular form and a perfect pairing; these agree over fields but not over general rings. The study of real, quadratic algebras shows the distinction between types of quadratic forms. The product zz* is a quadratic form for each of the complex numbers, split-complex numbers, and dual numbers.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.