Origins of the macroscopic symmetry breaking in centrosymmetric phases of perovskite oxides
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The motion of ferroelectric domain walls greatly contributes to the macroscopic dielectric and piezoelectric response of ferroelectric materials. The domain-wall motion through the ferroelectric material is, however, hindered by pinning on crystal defects, ...
An essential feature of ferroelectric thin films is the presence in them of domain structures. In order to efficiently implement ferroelectric films into potential new ferroelectrics-based devices, it is of high interest to understand the behaviour of doma ...
In this work, using zero kelvin ab initio calculations, we revisit the structure and ferroelectric phase transition in antiphase domain boundaries (APBs) in SrTiO3 (STO), which has been previously addressed in terms of a phenomenological approach. We confi ...
Oxygen octahedra tilting is a common structural phenomenon in perovskites and has been subject of intensive studies, particularly in rhombohedral Pb(Zr,Ti)O3 (PZT). Early reports suggest that the tilted octahedra may strongly affect the domain switching be ...
Perpetual demand for higher transfer speed and ever increasing miniaturization of radio and microwave telecommunication devices demands new materials with high electrical tunability. We have investigated built in electrical and strain fields' influence on ...
The high Curie temperature (T-C similar to 825 degrees C) of BiFeO3 has made this material potentially attractive for the development of high-T-C piezoelectric ceramics. Despite significant advances in the search of new BiFeO3-based compositions, the piezo ...
Ferroelectric oxides, such as lead zirconate titanate, have proved invaluable due to their excellent dielectric and piezoelectric properties. These classes of materials possess a large electric polarization below the Curie temperature. Regions of the cryst ...
Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expec ...
The expressions for the spontaneous polar contribution delta n (i) (s) to the principal values of the refractive index due to the quadratic electro-optic effect in ferroelectrics have been considered within the phenomenological approach taking into account ...
Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macrosco ...