A Distributed Algorithm for Partitioned Robust Submodular Maximization
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The central task in many interactive machine learning systems can be formalized as the sequential optimization of a black-box function. Bayesian optimization (BO) is a powerful model-based framework for \emph{adaptive} experimentation, where the primary go ...
Many modern services need to routinely perform tasks on a large scale. This prompts us to consider the following question:How can we design efficient algorithms for large-scale computation?In this thesis, we focus on devising a general strategy to addr ...
In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...
In this thesis we give new algorithms for two fundamental graph problems. We develop novel ways of using linear programming formulations, even exponential-sized ones, to extract structure from problem instances and to guide algorithms in making progress. S ...
An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...
We study the problem of maximizing a monotone set function subject to a cardinality constraint k in the setting where some number of elements is deleted from the returned set. The focus of this work is on the worst-case adversarial setting. While there exi ...
We solve the Bin Packing problem in O^*(2^k) time, where k is the number of items less or equal to one third of the bin capacity. This parameter measures the distance from the polynomially solvable case of only large (i.e., greater than one third) items. O ...
Schloss Dagstuhl – Leibniz-Zentrum fur Informatik2022
We study the classical problem of maximizing a monotone submodular function subject to a cardinality constraint k, with two additional twists: (i) elements arrive in a streaming fashion and (ii) m items from the algorithm’s memory might be removed after th ...
We study the online problem of minimizing power consumption in systems with multiple power-saving states. During idle periods of unknown lengths, an algorithm has to choose between power-saving states of different energy consumption and wake-up costs. We d ...
Clustering is a classic topic in combinatorial optimization and plays a central role in many areas, including data science and machine learning. In this thesis, we first focus on the dynamic facility location problem (i.e., the facility location problem in ...