**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Robust Maximization of Non-Submodular Objectives

Abstract

We study the problem of maximizing a monotone set function subject to a cardinality constraint k in the setting where some number of elements is deleted from the returned set. The focus of this work is on the worst-case adversarial setting. While there exist constant-factor guarantees when the function is submodular [1, 2], there are no guarantees for non-submodular objectives. In this work, we present a new algorithm Oblivious-Greedy and prove the first constant-factor approximation guarantees for a wider class of non-submodular objectives. The obtained theoretical bounds are the first constant-factor bounds that also hold in the linear regime, i.e. when the number of deletions is linear in k. Our bounds depend on established parameters such as the submodularity ratio and some novel ones such as the inverse curvature. We bound these parameters for two important objectives including support selection and variance reduction. Finally, we numerically demonstrate the robust performance of Oblivious-Greedy for these two objectives on various datasets.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (32)

Related MOOCs (9)

Related publications (32)

Submodular set function

In mathematics, a submodular set function (also known as a submodular function) is a set function whose value, informally, has the property that the difference in the incremental value of the function that a single element makes when added to an input set decreases as the size of the input set increases. Submodular functions have a natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory (as functions modeling user preferences) and electrical networks.

Approximation algorithm

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time.

Curvature

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonical example is that of a circle, which has a curvature equal to the reciprocal of its radius. Smaller circles bend more sharply, and hence have higher curvature. The curvature at a point of a differentiable curve is the curvature of its osculating circle, that is the circle that best approximates the curve near this point.

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Analyse I (partie 1) : Prélude, notions de base, les nombres réels

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Analyse I (partie 2) : Introduction aux nombres complexes

Introduction aux nombres complexes

In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...

Ola Nils Anders Svensson, Moran Feldman, Rico Zenklusen

We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our rounding technique, which we call o ...

2021Submodular functions are a widely studied topic in theoretical computer science. They have found several applications both theoretical and practical in the fields of economics, combinatorial optimization and machine learning. More recently, there have also ...